

Calculation Models and Images

Addition and Subtraction

Part-Whole Model

Cubes	$7=4+3$ $7=3+4$ $7-3=4$ $7-3=4$	Benefits Cubes can be useful to support children with the addition and subtraction of one-digit numbers. When adding numbers, children can see how the parts come together to make a whole. Children could use two different colours of cubes to represent the numbers before putting them together to create the whole. When subtracting numbers, children can start with the whole and then remove the number of cubes that they are subtracting in order to find the answer. This model of subtraction is reduction, or take away. Cubes can also be useful to look at subtraction as difference. Here, both numbers are made and then lined up to find the difference between the numbers. Cubes are useful when working with smaller numbers but are less efficient with larger numbers as they are difficult to subitise and children may miscount them.
Ten Frames	$4+3=7 \quad 4$ is a part. $3+4=7 \quad 3$ is a part. $7-3=4 \quad 7$ is the whole. $7-4=3$	Benefits When adding and subtracting within 10 , the ten frame can support children to understand the different structures of addition and subtraction. Using the language of parts and wholes represented by objects on the ten frame introduces children to aggregation and partitioning. Aggregation is a form of addition where parts are combined together to make a whole. Partitioning is a form of subtraction where the whole is split into parts. Using these structures, the ten frame can enable children to find all the number bonds for a number. Children can also use ten frames to look at augmentation (increasing a number) and take-away (decreasing a number). This can be introduced through a first, then, now structure which shows the change in the number in the 'then' stage. This can be put into a story structure to help children understand the change e.g. First, there were 7 cars. Then, 3 cars left. Now, there are 4 cars.

When adding two single digits, children can make each
number on separate ten frames before moving part of
one number to make 10 on one of the ten frames. This
supports children to see how they have partitioned one of
the numbers to make 10 , and makes links to effective
mental methods of addition.
When subtracting a one-digit number from a two-digit
number, firstly make the larger number on 2 ten frames.
Remove the smaller number, thinking carefully about how
you have partitioned the number to make 10 , this
supports mental methods of subtraction.
When adding three single-digit numbers, children can
make each number on 3 separate 10 frames before
considering which order to add the numbers in. They may
be able to find a number bond to 10 which makes the
calculation easier. Once again, the ten frames support the
link to effective mental methoss of addition as well as
the importance of commutativity.

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column addition. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Children should first add without an exchange before moving on to addition with exchange.. The representation becomes less efficient with larger numbers due to the size of Base 10. In this case, place value counters may be the better model to use.
Using Base 10 or Dienes is an effective way to support children's understanding of column subtraction. It is important that children write out their calculations alongside using or drawing Base 10 so they can see the clear links between the written method and the model.

Multiplication and Division

Number Shapes
Number Tracks

